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Abstract. Collapse of cavities ( or bubbles ) in liquids obeys a non-linear differential equation
where the variables are the radius of the cavity and the velocity of the liquid/vapor interface,
known as the cavity wall. Numerical simulations of the collapse of cavities are shown, using
the finite difference method.  Simulations were made using: water, due to its practical interest
and because of the experimental data available; benzene,  due to its high vapor pressure
values, when compared to water; glycerin, due to its high viscosity values; mercury, due to its
high surface tension and density values . One can conclude from photographic studies that  a
spherical symmetry hypothesis can be used for the collapse of one single cavity. This
symmetry is broken only at the final stage of the collapse, where the interface velocity is very
high.

Pressure fields values are calculated in an  area of 800 x 800 mm,  for the case of
several cavities, where the spherical symmetry no longer exists. Results are shown as
pressure curves in the plane. Such calculations are new due to their general point of view,
since the existing method does not take into account the physical properties of the fluid and it
is  available for one cavity only.

Key-words: Cavity, Cavitation, Bubbles.



1. INTRODUCTION

       In the process of formation of bubbles in liquids, air and vapour are always trapped inside
the bubbles, since the nucleation begins in a micro-bubble of air, see Hammitt (1980), and the
bubble is filled by vapour as it grows. Such process begins when the pressure in the liquid
reaches its vapour pressure. Therefore the presence of vapour must be taken into account as
well as air. Although Poritsky (1950), studying the collapse of a bubble, considered a pressure
inside the bubble, he didn’t take into account the compression of vapour and air during the
collapse.
       When the bubble is submitted to greater values of pressure, collapse will occur. Some
photographic studies of collapsing bubbles in a flow over ogives were made by Plesset (1949).
The pressure field due to the collapse of bubbles in liquids can be calculated as a function of
the radius of the bubble and the physical properties of the fluid, for special values of initial
and boundary conditions.
       Pressure field is calculated for several fluids under the hypothesis of adiabatic collapse,
since there is no time for heat transfer to occur. BAZANINI et al. (1998). have shown that
adiabatic hypothesis is more reliable than the isothermal hypothesis, for the simulation of the
collapse of a single bubble. The choice of the fluids is based on their physical properties. Each
selected fluid has a high value of one physical property, when compared to water, as follows:
benzene, high value of vapour pressure; glycerin, high value of viscosity and mercury, high
value of density. Therefore the influence of physical properties in the pressure field of a
collapsing bubble in an incompressible liquid can be investigated.

2. BASIC EQUATIONS

2.1 Collapse equation

       The basic equations of the motion of the bubble wall during the collapse of a spherical
bubble in an incompressible liquid is obtained from the Navier-Stokes equation in the
vectorial form below (Welty et al. (1984):
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where µ is the viscosity and ρL is the liquid density. B represents the body forces, P is the
pressure and 
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ν  is the velocity vector.
       For a spherical bubble in an incompressible liquid, the motion is in the radial direction,
and  the velocity vector is:

   

Variables involved in the process are shown in figure 1 below, where R(t) is the radius
of the bubble, r is a radial position in the liquid and R0 is the initial radius of the bubble.
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Figure 1: Variables involved in the collapse of a bubble.

 Neglecting body forces, the Navier-Stokes equation yields:
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       Once the motion is in the radial direction, equation (4) can be written in the scalar form.
Using the definition of substantial derivative:
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       Integrating equation (5) between  a radial position in the liquid r and a position far
enough in the liquid ( where no effects of the collapse are felt, called  ∞ ):
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       To evaluate the last term in equation (6) above, one more equation is necessary, for the
radial velocity vr as a function of time t. The continuity equation applied in a variable
spherical control volume situated between the radius r and R(t) (figure 1), is used, see Welty
et al. (1984).

       Equation (7) above can also be  obtained, as in the chapter four of  Fox;McDonald (1992).
       For an incompressible fluid, since ρL is a constant for incompressible liquids, the
continuity equation becomes:
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       Evaluating the desired term, results:
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       Substituting eq. (9) in eq. (6), results:
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       In the bubble wall:

          r = R (t)
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then equation. (10) becomes:
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       Vapor and air trapped inside the bubble are assumed to be ideal gases. Since the collapse
is very fast ( about 0,7 ms for water, as can be seen in Knapp & Hollander (1948)), the
process is assumed as adiabatic because there is no time for heat transfer to occur.
        Equations considering surface tension S and viscosity effects are used as follows:

and for the pressure external to the bubble Pe, eq. (16) below can be used:

       where the internal pressure Pi is due to the presence of vapor and air inside the bubble:
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       Substituting equationss. (15), (16) and (17) in equation. (14), and making R(t) = R,

dR(t)/dt = R´ and d2R(t)/dt2 = R´´, results an equation for the collapse of a bubble:

       Under the hypothesis of adiabatic collapse and substituting equation (8), results:

       Air and vapor initial pressure inside the bubble, Pg0 and Pv0, respectively, shall be
considered as well as air and vapor adiabatic constants, Kg and Kv.

2.2 Pressure field equations

Available method for pressure field calculation during the collapse of a bubble is
appropriate for one empty bubble only, and disregards physical properties of the fluid, as can
be seen in the classical work by Rayleigh (1917).

To calculate the pressure field taking into account the physical properties of the fluid,
bubbles are assumed as sinks in the potential flow theory. Since eq. (19) is in the differencial
form, manipulations of the Navier-Stokes and continuity equations in the differencial form are
necessary to find an equation for pressure field calculation.  The pressure field is calculated in
an area of 800 x 800 mm. For the two-dimensional case, Navier-Stokes and continuity
equations are (Swanson (1970)):

where u and v are the velocities in the x and y direction, respectively and νL is the kinematic
viscosity of the liquid.
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       Differentiating equation (20) in regards to y and equation (21) in regards to x, subtracting
the former from the later equation and simplifying using equation (22), results ( cross
differences disappear ):

        The stream function  for the two-dimensional case as defined by Welty et al. (1984), is:

       Using the stream function definition above, eq. (23) becomes:

       The use of the above equation can be made for any number of bubbles, as seen in
Bazanini (1998). Once the bubbles are treated as sinks, the stream function field can be
obtained by simple addition of the stream functions of every bubble.
       Stream function field calculations for every sink can be made using the following
equation,:

where C is the position of the calculated point related to the sink.

3. RESULTS

       To calculate the pressure field it is necessary to solve equations (19) and (26). An
analytical solution is very difficult or may be impossible. Once numerical methods become
necessary, equations (19) and (26) are solved using the finite difference method, for the
following conditions: R0 = 3,56 mm, Pg0 =  40 Pa ( initial conditions ) as measured by Knapp
& Hollander (1948); P∞ = 50,000 Pa as boundary condition. The time step has been made
equal to 10-5 s, which is shown to be enough for such calculations. Calculations are ended
when the bubble radius reaches 1 mm, since it is not possible to assure the existence of the
bubble beyond this value.
       Equations  (19), (26) and (27) take into account the physical properties of the fluid and
can be used for several bubbles.
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       In table 1 below, values of initial vapour and air pressure are shown. Vapour pressure is
expected to have a great influence in the pressure field, as the vapour and air are compressed
when the bubble collapses, vapour and air pressures inside the bubble raise, and initial vapour
pressure is much greater than initial air pressure, as can be seen in table 1.

                                  Table 1. Initial air and vapour pressure

Fluid (vapour) P0 (Pa)
Benzene 10,000
Glycerin 0.014
Mercury 0.17
Water 2,340
Air 40

      Since the calculation method presented here is adequate in the presence of several
bubbles, it is used for four randomly disposed bubbles in an area of 800 x 800 mm, under the
initial and boundary conditions:Pg0 = 40 Pa; R0 = 3,56 mm and P∞ = 50,000 Pa. For four
bubbles there is no spherical symmetry in the pressure field anymore, so the pressure field
equation (equation (26)) will be in the rectangular form. Results are shown in figures 2 to 5
for each fluid:
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Figure  3. Pressure fie ld for benzene.
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       It can be seen in figures 2 to 5 that pressure values are greater for benzene and water
respectively, because these fluids have the greatest values of initial vapour pressure. Although
the scale is the same in figs. 2 to 5 (1100 kPa), one can see that benzene has greater values of
pressure in the field (white areas), followed by water, due to initial vapour pressure values,
which raise as the collapse proceeds. Greater values of pressure are observed in the liquid
(white areas), because there we have the effect of the collapse of all bubbles at the same time.
Inside the bubbles, pressure values are smaller for glycerin and mercury (see figures 2 to 5)
than for water and benzene, due to initial vapour pressure values, since viscosity and density
didn't take a major influence in the pressure field.

4. CONCLUSIONS

       Initial vapour pressure was of major influence in the pressure field of collapsing spherical
bubbles in an incompressible liquid as can be seen in figures 2 to 5. This fact is due to the
compressing process during the collapse of the bubble. As the bubble collapses, vapour and
air are compressed and pressure inside the bubble raises. Since water was used as a parameter,
one can conclude from figs. 4 and 5 that properties like viscosity and density are not of major
influence for the pressure field.
       Greater values of pressure were find in the liquid, because of the simultaneous influence
of all collapsing bubbles. Glycerin and mercury have smaller values of pressure than water
and benzene, due to initial vapour pressure values.
        Calculations presented here are adequate to any fluid of known physical properties, but
there are is infinite number of possibilities for calculations when varying  parameters such as
number and positions of bubbles, initial and boundary conditions, and physical properties.
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